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Abstract—Indicators of Compromise (IOCs) are artifacts ob-
served on a network or in an operating system that can be utilized
to indicate a computer intrusion and detect cyber-attacks in an
early stage. Thus, they exert an important role in the field of
cybersecurity. However, state-of-the-art IOCs detection systems
rely heavily on hand-crafted features with expert knowledge
of cybersecurity, and require large-scale manually annotated
corpora to train an IOC classifier. In this paper, we propose
using an end-to-end neural-based sequence labelling model to
identify IOCs automatically from cybersecurity articles without
expert knowledge of cybersecurity. By using a multi-head self-
attention module and contextual features, we find that the
proposed model is capable of gathering contextual information
from texts of cybersecurity articles and performs better in the
task of IOC identification. Experiments show that the proposed
model outperforms other sequence labelling models, achieving
the average F1-score of 89.0% on English cybersecurity article
test set, and approximately the average F1-score of 81.8% on
Chinese test set.

I. INTRODUCTION

Indicators of Compromise (IOCs) are forensic artifacts that
are used as signs when a system has been compromised by
an attacker or infected with a particular piece of malware.
To be specific, IOCs are composed of some combinations of
virus signatures, IPs, URLs or domain names of botnets, MD5
hashes of attack files, etc. They are frequently described in
cybersecurity articles, many of which are written in unstruc-
tured text, describing attack tactics, technique and procedures.
For example, a snippet from a cybersecurity article is shown
in Fig. 1. From the text , token “INST.exe” is the name
of an executable file of a malicious software, and the file
“ntdll.exe” downloaded by “INST.exe” is a malicious file as
well. Obviously, these kinds of IOCs can be then utilized for
early detection of future attack attempts by using intrusion
detection systems and antivirus software, and thus, they exert
an important role in the field of cybersecurity. However,
with the rapid evolvement of cyber threats, the IOC data are
produced at a high volume and velocity every day, which
makes it increasingly hard for human to gather and manage
them.

A number of systems are proposed to help discover and
gather malicious information and IOCs from various types

Fig. 1. Example of IOCs contained in cybersecurity articles

of data sources [1]–[6]. However, most of those systems
consist of several components that identify IOCs by using
human-crafted features that heavily rely on specific language
knowledge such as dependency structure, and they often have
to be pre-defined by experts in the field of the cybersecurity.
Furthermore, they need a large amount of annotated data
used as the training data to train an IOC classifier. Those
training data are frequently difficult to be crowed-sourced,
because non-experts can hardly distinguish IOCs from those
non-malicious IPs or URLs. Thus, it is a time-consuming
and laborious task to construct such systems for different
languages.

In this work, we consider the task of collecting IOCs from
cybersecurity articles as a task of sequence labelling of natural
language processing (NLP). By applying a sequence labelling
model, each token in an unstructured input text is assigned
with a label, and tokens assigned with IOC labels are then
collected as IOCs. Recently, sequence labelling models have
been utilized in many NLP tasks. Huang et al. [7] proposed
using a sequence labelling model based on the bidirectional
long short-term memory (LSTM) [8] for the task of named
entity recognition (NER). Chiu et al. [9] and Lample et
al. [10] proposed integrating LSTM encoders with character
embedding and the neural sequence labelling model to achieve
a remarkable performance on the task of NER as well as
part-of-speech (POS) tagging. Besides, Dernoncourt et al. [11]
and Jiang et al. [12] proposed applying the neural sequence
labelling model to the task of de-identification of medical
records.

Among the previous studies of the neural sequence labelling
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task, Zhou el al. [13] firstly propose using an end-to-end
neural sequence labelling model to fully automate the process
of IOCs identification. Their model is on the basis of an
artificial neural networks (ANN) with bidirectional LSTM
and CRF. However, their newly introduced spelling features
bring a more extraction of false positives, i.e., tokens that are
similar to IOCs but not malicious. In this paper, we further
introduce a multi-head self-attention module and contextual
features to the ANN model so that the proposed model can
perform better in gathering the contextual information from the
unstructured text for the task of IOCs identification. Based on
the results of our experiments, our proposed approach achieves
an average precision of 93.1% and the recall of 85.2% on
English cybersecurity article test set, and an average precision
of 82.9% and recall of 80.7% on Chinese test set. We further
evaluate the proposed model by training the model using both
the English dataset and Chinese dataset, which even achieves
better performance.

II. MODEL

Fig. 2 shows the 3 components (layers) of the proposed
neural network architecture.

A. Token Embedding Layer

The token embedding layer takes a token as input and
outputs its vector representation. As shown in Fig. 2, given
an input sequence of tokens x1, . . . , xn, the output vector ei
(i = 1, . . . , n) of each token xi results from the concatenation
of two different types of embeddings: token embedding Vt(xi)
and the character-based token embeddings

−→
bi ,
←−
bi that come

from the output of a character-level bi-LSTM encoder.

B. Sequence Representation Layer

The Sequence Representation Layer takes the sequence of
embeddings ei (i = 1, . . . , n) as input, and outputs a sequence
pi(i = 1, . . . , n), where the tth element of pi represents the
probability that the ith token has the label t.

Different from the previous work of sequence labelling in
news articles or patient notes [10], [11], sentences from a
cybersecurity report often contain a large number of tokens
as well as lists of IOCs with little context, making it much
more difficult for LSTM to encode the input sentence cor-
rectly. Therefore, instead of the token LSTM layer in [13],
we propose sequence representation layer that consists of 3
modules, i.e., attention-based Bi-LSTM module, multi-head
self-attention module and token feature module.

a) Attention-based Bi-LSTM: Considering that tokens
cannot contribute equally to the representation of the input
sequence, we introduce attention mechanism to Bi-LSTM
to extract such tokens that are crucial to the meaning of
the sentence. Then, we aggregate the representation of those
informative words to form the vector of the input sequence.

The attention mechanism is similar to the one proposed by
Yang et al. [14], which is defined as follows:

ui = tanh(Wwhi + bw)

αi =
exp(u>i uw)∑
i exp(u

>
i uw)

s =
∑
i

αihi

That is to say, we first compute the ui as a hidden represen-
tation of the hidden states of Bi-LSTM hi for ith input token,
where hi is obtained by concatenating the ith hidden states of
forward and backward LSTM, i.e., hi = [

−→
h i;
←−
h i]. Then, we

measure the importance of the ith token with a trainable vector
uw and get a normalized importance weight αi through a
softmax function. After that, the sentence vector s is computed
as a weighted sum of hi (i = 1, . . . , n). Here, weight matrix
Ww, bias bw and vector uw are randomly initialized and
jointly learned during the training process. Note that each input
sentence merely has one sentence vector s as its weighted
representation, and s is then used as a part of the ith output
of attention-based Bi-LSTM module, where hL

i = [
−→
h i;
←−
h i; s]

(i = 1, . . . , n).
b) Multi-head self-attention: Motivated by the successful

application of self-attention in many NLP tasks [15], [16],
we add a multi-head self-attention module to enhance the
embedding of each word with the information of other words
in a text adaptively. By means of this, the local text regions
where convolution performs carry the global information of
text. Following the encoder part of Vaswani et al. [15], multi-
head self-attention module is composed of a stack of several
identical layers, each of which consists of a multi-head self-
attention mechanism and two convolutions with kernel size 1.
Given the sequence of embeddings ei as input, and the output
is defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)

MultiHead(Q,K, V ) = [head1; . . . ; headh]

where headi = Attention(QWQ
i ,KW

K
i , V WV

i )

where, WQ
i , WK

i , WV
i are parameter matrices for the pro-

jections of queries Q, keys K and values V in the ith head,
respectively. Here, Q, K and V are set as the input sequence ei
(i = 1, . . . , n). The MultiHead(Q,K, V ) is then given to the
two convolutions and the output of multi-head self-attention
hM
i (i = 1, . . . , n) is obtained.

c) Token features: Furthermore, we introduce some fea-
tures to defined IOCs to improve the performance of the
proposed model on a very small amount of training data. Here,
we define two types of features, i.e., spelling features and
contextual features, and map each token xi (x = 1, . . . , n) to a
feature vector feature(xi) = [features(xi); feature

c(xi)],
where features(xi) is the spelling feature vector and
featurec(xi) is the contextual feature vector. Note that the
values of features are then jointly learned during the process



Fig. 2. ANN model of sequence labeling for IOCs automatic identification

of training. In Section III, we will explain the features in more
detail.

As shown in Fig. 2, the vector oi (i = 1, . . . , n) is a
concatenation of the hL

i , hM
i and f(i). Each vector oi is then

given to a feed-forward neural network with one hidden layer,
which outputs the corresponding probability vector pi.

C. CRF Layer

We also introduce a CRF layer to output the most likely
sequence of predicted labels. The score of a label sequence
y = y1, . . . , yn is defined as the sum of the probabilities of
unigram labels and the bigram label transition probabilities:

score(y) =

n∑
i=1

pi[yi] +

n∑
i=2

T [yi−1, yi]

where T is a matrix that contains the transition probabilities
of two subsequent labels. Vector pi is the output of the token
LSTM layer, and pi[yi] is the probability of label yi in pi.
T [g, h] is the probability that a token with label g is followed
by a token with the label h. Subsequently, these scores are
turned into probabilities of the label sequence by taking a
softmax function over all possible label sequences.

III. FEATURES

We extract a vector of features for each tokens of input
sequences. In this section, we present each feature category in
detail.

A. Spelling Features

Since the IOCs tend to follow fixed patterns, we predefined
several regular expressions and spelling rules to identify IOCs.
For example, to identify a URL, we defined a regular expres-
sion http(s)?:\\[0-9a-zA-Z_\.\-\\]+ and set the
value of the URL feature to 1 when the input token matches the
regular expression.1 However, such expressions and spelling
rules could introduce false positives, i.e., tokens that have the
same spelling patterns as IOCs but are not malicious. In this
work, we further introduce the contextual features as described
next.

B. Contextual Features

IOCs in cybersecurity articles are often described in a pre-
dictable way: being connected to a set of contextual keywords
[2], [17]. For example, a human user can infer that the word
“ntdll.exe” is the name of a malicious file on the basis of the

1 Details of the spelling features can be found in [13].



words “download” and “compromised” from the text shown
in Fig. 1. By analyzing the whole corpus, it is interesting
that malicious file names tends to co-occur with words such
as ”download”, ”malware”, ”malicious”, etc. In this work,
we consider words that can indicate the characteristics of
the neighbor words as contextual keywords and develop an
approach to generate features from the automatically extracted
contextual keywords.

Taking the above into account, we introduce the contextual
feature vector featurec(x) for a given input token x, where
the ith element of featurec(x) is defined as follows:

featureci (x) =
freqw(ki;x, size)

freq(x)

(ki ∈ K, i = 1, . . . , |K|)

freq(x) is the frequency of token x in the whole corpus, while
freqw(ki;x, size) is the frequency of contextual keyword ki
from the windowed portions of the texts centering on the token
x in the whole corpus and size is the size of window. The set
of contextual keywords K are automatically extracted from the
annotated texts, where each contextual keyword ki(ki ∈ K)
satisfies the following conditions:

(1)
∑
t∈T

freqw(ki; t, size) ≥ lb, where T is the set of

manually annotated IOCs and lb is a the lower bound
of the frequency.

(2) ki is not a punctuation or stopword2.

Note that we extract contextual keywords only from man-
ually annotated data (e.g., training set), while we compute
the contextual feature vector in all of the unlabeled data.
According to this definition, it is obvious that the dimension
of the contextual feature vector is as the same as the number
of extracted contextual keywords. The size of window size
and the lower bound of frequency lb are then tuned by the
validation set.

C. Usage of Features

The feature vector for an input token is the concatenation
of the token spelling feature vector and the contextaul feature
vector. Here, to elucidate the best usage of the feature vector,
we evaluate the feature vector by concatenating it at different
locations in the proposed model, i.e., the input of the token
LSTM layer (ei = [Vt(xi);

−→
bi ;
←−
bi ; feature(xi)]), the hidden

state of the token LSTM (hi = [
−→
h i;
←−
h i; feature(xi)]), and

the output of token LSTM (oi = [hi; s; feature(xi)]). Among
them, to concatenate the feature vector with the LSTM hidden
state vector and the sentence vector of attention in the token
LSTM layer, as shown in Section II-B, achieved the best per-
formance. We speculate that the features played an important
role in the task of IOCs identification and feature vectors near
the output layer were able to improve the performance more
significantly than those at other locations.

2 https://github.com/hankcs/HanLP/blob/master/data/dictionary/stopwords.
txt

TABLE I
STATISTICS OF DATASETS (NUMBERS OF TRAINING / VALIDATION / TEST

SET)

English Dataset Chinese Dataset
attacker 5,304 / 1,067 / 1,609 742 / 230 / 126
attack method 2,737 / 610 / 882 126 / 41 / 27
attack target 3,055 / 1,055 / 695 161 / 17 / 15
domain 6,443 / 1,054 / 1,701 1,682 / 438 / 468
e-mail address 1,284 / 154 / 222 67 / 16 / 49
file hash 10,367 / 2,055 / 2,459 2,484 / 1,231 / 1,055
file information 4,353 / 1,024 / 1,131 931 / 469 / 531
IPv4 3,012 / 729 / 819 969 / 252 / 264
malware 7,317 / 1,585 / 1,974 2,958 / 1,524 / 1,035
URL 1,849 / 105 / 156 1,618 / 333 / 487
vulnerability 1,557 / 309 / 359 469 / 166 / 143
tokens 1,169,896 / 253,336 775,549 / 282,600

/ 350,406 / 249,946
paragraphs 6,702 / 1,453 / 2,110 6,423 / 2,314 / 2,059
articles 250 / 70 / 70 363 / 122 / 122

IV. EVALUATION

A. Datasets

For English dataset, we crawl 687 cybersecurity articles
from a collection of advanced persistent threats (APT) re-
ports which are published from 2008 to 20183. All of these
cybersecurity articles are used to train the English word
embedding. Afterwards, we randomly select 370 articles, and
manually annotate the IOCs contained in the articles. Among
the selected articles, we randomly select 70 articles as the
validation set and 70 articles as the test set; the remaining
articles are used for training.

For Chinese dataset, we crawl 5,427 cybersecurity articles
online from 35 cybersecurity blogs which are published from
2001 to 2018. All of these cybersecurity articles are used to
train the Chinese word embedding. Afterwards, we randomly
select 607 articles, and manually annotate the IOCs contained
in the articles. Among the selected articles, we randomly select
122 articles as the validation set and 122 articles as the test
set; the remaining articles are used for training.

TABLE I shows statistics of the datasets. The output labels
are annotated with the BIO (which stands for “Begin”, “Inside”
and “Outside”) scheme.

B. Training Details

For pre-trained token embedding, we apply word2vec [18]
to all crawled 687 English APT reports and 5,427 Chinese
cybersecurity articles described in Section IV-A respectively.
The word2vec models are trained with a window size of 8,
a minimum vocabulary count of 1, and 15 iterations. The
negative sampling number of word2vec is set to 8 and the
model type is skip-gram. The dimension of the output token
embedding is set to 100.

The ANN model is trained with the stochastic gradient
descent to update all parameters, i.e., token embedding, char-
acter embedding, parameters of Bi-LSTM, weights of sentence

3 https://github.com/CyberMonitor/APT CyberCriminal Campagin
Collections

https://github.com/hankcs/HanLP/blob/master/data/dictionary/stopwords.txt
https://github.com/hankcs/HanLP/blob/master/data/dictionary/stopwords.txt
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections
https://github.com/CyberMonitor/APT_CyberCriminal_Campagin_Collections


TABLE II
EVALUATION RESULTS (MICRO AVERAGE FOR 11 LABELS)

Models English Dataset Chinese Dataset
Precision Recall F1-score Precision Recall F1-score

Baseline 47.1 58.8 52.3 60.1 42.7 49.9

Huang et al. [7] 64.8 33.6 51.6 60.2 35.0 44.3

Lample et al.
[10]

83.0 75.2 78.9 78.3 71.8 74.9

Rei et al. [19] 81.6 74.5 77.9 76.1 71.0 73.5

Zhou et al. [13] 90.4 87.2 88.8 80.8 80.1 80.4

Our model 93.1 85.2 89.0 82.9 80.7 81.8

attention, weights of multi-head self-attention, token features,
and transition probabilities of CRF layers at each gradient step.
For regularization, the dropout is applied to the output of each
sub layer of the ANN model. Further training details are given
below: (a) For attention-based Bi-LSTM module, dimensions
of character embedding, hidden states of character-based token
embedding LSTM, hidden states of Bi-LSTM, and sentence
attention are set to 25, 25, 100 and 100, respectively. For multi-
head self-attention module, we employ a stack of 6 multi-head
self attention layer, each of which has 4 head and dimension
of each head is set to 64. (b) All of the ANNs parameters are
initialized with a uniform distribution ranging from -1 to 1. (c)
We train our model with a fixed learning rate of 0.005. The
minimum number of epochs for training is set as 30. After the
first 30 epochs had been trained, we compute the average F1-
score of the validation set by the use of the currently produced
model after every epoch had been trained, and stop the training
process when the average F1-score of validation set fails to
increase during the last ten epochs. We train our model for,
if we do not early stop the training process, 100 epochs as
the maximum number. (d) We rescale the normalized gradient
to ensure that its norm does not exceed 5. (e) The dropout
probability is set to 0.5.

C. Results

As shown in TABLE II, we report the micro average of
precision, recall and F1-score for all 11 types of labels for
a baseline as well as the proposed model. As the baseline,
we simply judge the input token as IOCs on the basis of the
spelling features described in [13]. As presented in TABLE II,
the score obtained by the proposed model is clearly higher
than the baseline. Here, as described in Section III-B, the
sizes of window and lower bounds of frequency for selecting
contextual keywords are tuned as 4 and 7 throughout the
evaluation of English dataset, and tuned as 3 and 4 throughout
the evaluation of Chinese dataset. The number of extracted
contextual keywords from the English dataset is 1,328, and
from the Chinese dataset is 331.

Furthermore, we quantitatively compare our study with
other typical works of sequence labelling, i.e., the work
of Huang et al. [7], the work of Lample et al. [10] and
the work of Rei et al. [19]. Huang et al. [7] proposed a
bidirectional LSTM model with a CRF layer, including hand-

crafted features specialized for the task of sequence labelling.
Lample et al. [10] described a model where the character-level
representation was concatenated with word embedding and Rei
et al. [19] improved the model by introducing an attention
mechanism to the character-level representations. We train
these models by employing the same training set and training
parameters as the proposed model. As shown in TABLE II,
the proposed model obtains the highest precision, recall and
F1-score than other models in the task of IOCs extraction.
Compared with the second-best model of Lample et al. [10],
the performance gain of the proposed model on the English
dataset is approximately 10.1% of precision and 10.0% of
recall. The performance gain of the proposed model on the
Chinese dataset is approximately 4.2% of precision and 9.0%
of recall.

We also quantitatively compare our study with the work of
Zhou et al. [13], which proposed a bidirectional LSTM model
with a CRF layer, including hand-crafted spelling features
for the task of IOC identification. As shown in TABLE II,
the proposed model obtains a slightly higher F1-score on
the English dataset and significantly higher F1-score on the
Chinese dataset.

TABLE III compares several examples of correct IOC
extraction produced by the proposed model with one by
the work of Lample et al. [10]. In the first example, the
model of Lample et al. [10] fails to identify the malicious
URL “http://www7.chrome-up.date/0m5EE”, because the to-
ken only appears in the test set and consists of several
parts that are uncommon for URLs, such as “www7” and
“date”, and thus both the token embedding and the character
embedding lack proper information to represent the token as
a malicious URL. The proposed model correctly identifies
the URL, where the token is defined as a URL by spelling
features and is then identified as a malicious URL by the
use of the context information. In the second example, the
model of Lample et al. [10] fails to identify token “cr.sh”
of the input Chinese text as a malicious file name, while the
token is assigned with a correct label by the proposed model.
It is mainly because that the token “cr.sh” is defined as a
token of file information by spelling features and tends to co-
occur with words, “ ”(download) and “ ”(mining
software). These two words often appear nearby malicious file
information and are then extracted as contextual keywords in
Section III-B. The token “cr.sh” is then correctly identified as a
token of malicious file information by the use of the contextual
features.

D. Analysis of Contextual Features

The proposed model provides an intuitive way to inspect
the contextual information of each given token. As described
in Section III-B, we initialize the contextual features of each
given token using the automatically extracted contextual key-
words and jointly learn them during the process of training
with the whole ANN model. To prove the effectiveness of
the contextual features, we visualize the learned weights
martix of each contextual keyword of contextual feature and

http://www7.chrome-up.date/0m5EE


TABLE III
EXAMPLES OF CORRECT IDENTIFICATION BY THE PROPOSED MODEL

Fig. 3. Heatmap of part of contextual features martix in the English dataset

TABLE IV
TOP 10 AND BOTTOM 10 LARGEST WEIGHTED CONTEXTUAL KEYWORDS

OF CONTEXTUAL FEATURE IN THE ENGLISH DATASET

top−10 bottom−10
IOC to-
ken

hash, domain, server,
filename, ip, dropped,
dropper, register, request,
email

function, content, cam-
paign, payload, key, sam-
ple, referred, specialized,
sources, effort

non-IOC
token

ascii, password,
researcher, eset, select,
communicate, java,
gateway, type, region

indicators, dropped, port,
copies, lead, detection,
dropper, send, PDB,
register

show several examples in Fig. 3. Each row of the matrix
in each plot indicates the weights of contextual keywords
for the given tokens. From this we see which contextual
keyword were considered more important to represent the
contextual information of the given token. We can see from
the matrix in Fig. 3 that, for the token “spearphshing”, which
is an email-spoofing attack method, the contextual keyword

“email” has the largest weight. For the malware “SunOrcal”,
which drops several malicious executable files, contextual
keywords “droppper” and “dropper” have larger weights than
other contextual keywords such as “ascii”, “port” and “type”.
For non-IOC token “socket”, contextual keywords “gateway”
and “port” yield larger weights than other keywords because
”socket” tends to co-occur with “gateway” and “port”.

We further calculate the average weight of each contextual
keyword and show the top 10 and bottom 10 largest weighted
contextual keywords in TABLE IV. From this we see that con-
textual keywords such as, “hash” and “filename”, which tends
to co-occur with malicious filenames, have the largest weights
for IOCs, while the contextual keywords such as “ascii”,
“password” have the largest weights for non-IOCs. Here, it
is interesting to find that contextual keyword “dropped” and
“droppper”, which tend to co-occur with malicious file infor-
mation and malwares, yield large weights for IOCs but small
weights for non-IOCs. The proposed ANN model benefits
from the differences of contextual information between IOCs
and non-IOCs that is represented by the contextual features,
and thus, achieves better performance than the previous works.

E. Training the Proposed Model with Bilingual Data

Even though security articles are written in different lan-
guages, most of the IOCs are written in English, and are de-
scribed in a similar pattern. Therefore, using multilingual cor-
pora could be a solution for addressing the lack of annotated
data, and the performance of the proposed model is expected



TABLE V
COMPARISON OF EVALUATION RESULTS WHEN TRAINING THE PROPOSED
MODEL WITH DIFFERENT TRAINING SETS (MICRO AVERAGE PRECISION /

RECALL / F1-SCORE FOR 11 LABELS)

English test set Chinese test set
Only English training set 93.1 / 85.2 / 89.0 - / - / -
Only Chinese training set - / - / - 82.9 / 80.7 / 81.8

English + Chinese training set 91.6 / 87.3 / 89.6 85.6 / 83.3 / 84.4

to be improved by extending the training set. To examine the
hypothesis, we ran a number of additional experiments using
both the English dataset and Chinese dataset, both of which
are described in Section IV-A and are not parallel data or
comparable data.

As pre-trained word embeddings for the bilingual training
dataset, we applied a cross-lingual word embedding obtained
by the work of Duong el al [20], where the English-Chinese
cross-lingual dictionary is obtained by simply translating all
the English words from English dataset to Chinese and Chi-
nese words from Chinese dataset to English using Google
translation4. As contextual feature vector, we concatenate the
contextual feature vector obtained from English dataset with
the contextual feature vector obtained from Chinese dataset.
Then we merge the English training set and the Chinese
training set into one set and train the proposed model with
the merged bilingual training set. TABLE V shows that the
proposed model trained with the English training set and
Chinese training set achieves a small improvement of F1-score
on English test set when compared with the model trained
with only English training set, and a great improvement of
F1-score on Chinese test set when compared with the model
trained with only Chinese training set.

We compare scores of each label when the proposed model
is trained with different training sets in TABLE VI. When
using the English test set, the F1-scores of labels “attack
method”, “attack target” and “malware” by the model trained
with the English training set and Chinese training set are
lower than those scores by the model trained with only the
English training set. It is mainly because that tokens of these
labels can be written in different languages, which harms the
model trained with the bilingual training data set. In contrast,
benefiting from the extension of training set, for types of
labels that are often written in English, e.g., “domain ”, “file
imformation”, “IPv4” and “vlunerability”, the proposed model
trained with the English training set and the Chinese training
set achieves higher scores than the model trained with only
the English training set. When using the Chinese test set, the
proposed model trained with the English training set and the
Chinese training set obtained a obviously higher F1-scores
than the model trained with only the Chinese training set for
almost all the types of labels. It is interesting to find that types
of labels “e-mail address”, “attack method”, “attacker”, which
lack of instances in Chinese training set, show the biggest
improvement by using the model trained with the bilingual

4 https://translate.google.com

training set.

V. RELATED WORK

a) NLP in cybersecurity: Few references in cyber se-
curity utilize natural language processing. Neuhaus and Zim-
mermann [21] analyze the trend of vulnerability by applying
latent Dirichlet allocation to vulnerability description. Liao
et al. [2] put forward a system to automatically extract IOC
items from blog posts. Husari et al. [3] proposed a system that
automatically extracted threat actions from unstructured threat
intelligence reports by utilizing a pre-defined ontology. A
concurrent work by Zhu et al. [6] automatically extracted IOC
data from security technical articles and further categorized
them into different stages of malicious campaigns. All of those
systems consist of several components that rely heavily on
manually defined rules, while our proposed model is an end-
to-end model using word embedding and token features as
input, which is more general and applicable to a broader area.

b) Neural sequence labelling models: There are amount
of ANN-based works in the area of sequence labelling. Col-
lobert et al. [22] described one of the first task-independent
neural sequence labelling model on the basis of convolutional
neural networks. Hammerton [23] first proposed a sequence
labelling model with LSTM. Huang et al. . [7] proposed using
a sequence labelling model based on the bidirectional LSTM
for the task of name entity recognition (NER). Lample et
al. [10] proposed integrating LSTM encoders with character
embedding and the neural sequence labelling model. Rei
et al. [19] improved the model by introducing an attention
mechanism to the character-level representations. Dernoncourt
et al. [11] proposed applying the neural sequence labelling
model to the task of de-identification of medical records. Liu
et al. [24] proposed a sequence labeling framework, which
effectively leverages the language model to extract character-
level knowledge. One appealing property of those works is
that they can achieve excellent performance with a unified
architecture and without task-specific feature engineering. It
remains unclear whether such works can be used for tasks
without a large amount of training data. Several works such
as Yang et al. [25] and Lee et al. [26] proposed applying
transfer learning to NER using a limited number of training
corpora. Nevertheless, a large dataset that has same labels
as the small training dataset is required for transfer learning,
which is hard to obtain in the field of cybersecurity. In this
paper, we introduce several spelling features without expert
knowledge of cybersecurity to the neural model, and achieve
excellent performance even using a small dataset for training.

VI. CONCLUSIONS

To conclude, in this paper, we newly introduce a multi-head
self-attention module and contextual features to the neural
based sequence labelling model, which significantly improved
the performance in the task of IOC identification. Based on
the evaluation results of our experiments, our proposed model
is proved effective on both the English test set and the Chinese
test set. We further evaluated the proposed model by training

https://translate.google.com


TABLE VI
EVALUATION RESULTS FOR EACH LABEL WHEN TRAINING THE PROPOSED MODEL WITH DIFFERENT TRAINING SETS (PRECISION / RECALL / F1-SCORE)

English test set Chinese test set
Only English English + Chinese only Chinese English + Chinese
training set training set training set training set

attacker 96.7 / 74.5 / 84.2 93.1 / 83.4 / 88.0 81.6 / 38.9 / 52.7 86.8 / 38.5 / 53.4
attack method 90.6 / 93.4 / 92.0 90.7 / 91.9 / 91.3 16.3 / 29.6 / 21.1 70.0 / 33.7 / 45.5
attack target 90.3 / 86.4 / 88.3 90.7 / 80.4 / 85.2 22.2 / 40.0 / 28.6 87.1 / 66.7 / 74.5
domain 93.2 / 93.5 / 93.4 91.6 / 97.1 / 94.3 79.9 / 88.5 / 84.0 79.2 / 91.9 / 85.1
e-mail address 98.4 / 84.4 / 90.8 97.5 / 91.0 / 94.1 20.4 / 20.4 / 20.4 81.3 / 53.1 / 64.2
file hash 90.3 / 99.9 / 94.8 89.7 / 99.9 / 94.5 99.2 / 99.4 / 99.3 98.9 / 99.8 / 99.3
file information 90.0 / 69.5 / 78.4 89.6 / 75.2 / 81.8 58.0 / 87.2 / 67.7 60.9 / 88.0 / 74.1
IPv4 92.5 / 93.1 / 92.8 92.2 / 93.9 / 93.0 92.7 / 88.8 / 90.7 92.3 / 89.3 / 90.7
malware 97.3 / 68.8 / 80.6 96.4 / 67.9 / 79.6 93.9 / 59.7 / 69.7 92.6 / 64.0 / 72.0
URL 99.7 / 92.3 / 95.9 98.9 / 92.5 / 95.6 82.5 / 83.1 / 82.8 84.9 / 86.2 / 85.5
vulnerability 97.9 / 89.7 / 93.6 93.8 / 96.1 / 94.9 98.6 / 96.5 / 97.5 96.1 / 98.8 / 97.5
micro average 93.1 / 85.2 / 89.0 91.6 / 87.3 / 89.6 82.9 / 80.7 / 81.8 85.6 / 83.3 / 84.4

the proposed model using both the English training set and
the Chinese training set and compared it with models that are
trained with only one training set, where the model trained
with the merged bilngual training set performs better.

One of our future works is to integrate the contextual
embeddings from the bidirectional language model into our
proposed model. The pretrained neural language models are
proved effective in the sequence labelling models [27]–[29]. It
is expected to improve the performance of the proposed model
by integrating both the contextual features and contextual
embeddings into the neural sequence labelling model.
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